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Section I

INTRODUCTION

Use of advanced fiber-reinforced composite laminates has been rapidly growing in
structural engineering, e.g., in the design of aircraft, space vehicles, automobiles,
large-span roof structures, etc. This is due to the high strength/weight ratio and the
possibility for optimal design by tailoring the mechanical properties of structural
components for a specific application. Increasing use of composite materials in the
design of high-performance vehicles has attracted much attention to the dynamic
behavior of structural components under service conditions. Experimental procedures
can provide information on the real behavior of structures to the designer, but cannot
cover all the design possibilities. Therefore, it is important to develop a general, as
well as reliable, analysis procedure which can predict the response of composite
laminates under a variety of service conditions.

Considerable research effort has been devoted to the development of analytical
procedures for the analysis of composite materials. This has resulted in a variety of
laminated plate theories and solution methods including, among others, classical thin
plate theory [e.g. Reissner 1961, Stavsky 1961], first-order shear deformable theories
feg. Yang 1966, Whitney 1970}, higher-order theories [e.g., Whitney 1973,1974, Nelson
1974, Lo 1977, Reddy 1984a] and discrete laminate theories [e.g., Srinivas 1973, Sun

1973, Pagano 1978,1983, Seide 1980, Green 1982}




Classical thin plate theory (CPT) based on the Kirchhoff hypothesis assumes that
the transverse shear deformation is negligible. For the analysis of laminated composites,
it is well known [Whitney 1969, Pagano 1969,1970b, Jones 1970, Srinivas 1970] that
use of CPT leads to underprediction of the transverse deflection, overprediction of
natural frequencies, and higher buckling loads. This is attributed to the fact that the
ratio of shear to Young’s modulus is lower in most composite materials than in
conventional isotropic materials. Also, the error grows with an increase in plate
thickness.

This theoretical deficiency of classical thin plate theory was corrected by the shear
deformable theory [Yang 1966] in which transverse shear deformation was taken into
account, following Mindlin's [1951] work, for the dynamic analysis of Jaminated plates.
Since then, various shear deformable theories have been proposed, including higher-order
theories in which the power expansion for displacements contains terms of order higher
than one. It has been shown [Whitney 1969, Srinivas 1970] that first order shear
deformable theory may be adequate to predict global behavior of laminated plates, eg.,
lateral deflection or fundamental natural frequency, but it is not better than CPT in
calculating in-plane stresses because it does not include the contributions of higher shear
modes. Higher-order theories lead to improved estimates of in-plane stress distributions
and of the flexural vibration characteristics.

However, the shear deformable laminate theory, whether it is the first or
higher-order theory, has two critical deficiencies. The first is its lack of capability to
describe local deformation precisely. Due to this, it is difficult to avoid error in
calculating natural frequencies as well as in-plane stresses around laminar interfaces,

especially, when shear rigidities of adjacent laminae are quite different [Sun 1973, Lo




1977} The other deficiency is the violation of equilibrium of the plate because stress
continuity at the interface is, in general, not satisfied. The need to eliminate these
deficiencies has motivated the development of several discrete laminated plate theories
[Srinivas 1973, Sun 1973, Seide 1980) in which variation of anisotropy in the
laminate is properly incorporated. The discrete laminate theory not only removes the
drawbacks of shear deformable theories noted above, but it also allows different
houndary conditions to be specified in each layer. It may be regurded as the most
general approach capable of accurately describing the mechanical behavior of any type
of laminated plates. Use of discrete laminate theories appeared to give better in-plane
stress disribution [Seide 1980] and more accurate natural frequencies [Sun 197
However, this theory, in general, involves a large number of field equations, and
consequently makes the problems quite complicated.

A basis often used for laminate theories is to assume a pattern of wvariation of
displacements over the thickness of the plate. In such theories, which allow for shear
deformation, the constitutive relations of transverse shear are, in general, not satisfied.
As a result, it is not possible to avoid some error in evaluating the laminate stiffness.
Since the effect of transverse shear deformation is significant in laminated composites,
accuracy of analysis can be considerably affected. In particular, its effect becomes more
critical in thick laminates or hybrid laminates made of layers with drastically
different material properties. Many attempts have been made to treat the shear
deformation realistically, but a standard procedure applicable to laminates of arbitrary
construction is not available.

Since the boundary value problem of a structure constructed with composite

laminates is extremely complex, approximate numerical techniques are often used to




obtain the solution. The most popular tool has been the finite element method which
is usually based on a wvariational formulation. Several different types of element
geometries, interpolation schemes and formulation strategies have been introduced, (eg.,
Mawenya [1974], Reddy [1980,1984b], Bhashyam [1983), and Putcha [1986]). To provide
the basis for different possible formulations, Al-Ghothani [1986] presented
complementary variational formulations of the discrete laminate theory of dynamics of
Jaminated plates following Sandhu's [1970,1971,1975,1976] procedure. Various extended
and specialized forms of the general variational principle were discussed. lowever, he
failed to derive variational principles for the direct formulation which provides another
and often more useful approach for construction of approximate solution procedures.

As part of the current research program, reliable procedures were to be developed
for the analysis of stresses and deformations in delamination specimens of composite
laminates allowing for the coupling of flexure and extension. This required
development of a theoretical model which could realistically describe the mechanical
behavior of composite laminates. The discrete laminate theory was selected as quite
general. This was extended to include constitutive coupling of force resultants in the
lamina. In Section Il, the field equations of a discrete laminate theory based on the
assumed-displacement field are summarized following Srinivas [1973], Sun [1973] and
Seide [1980), and its somewhat ad hoc treatment of transverse shear deformation is
discussed.  Section IIl presents a procedure based on a generalization of Reissner's
method to incorporate the effect of transverse shear deformation in a consistent manner.
A variational formulation of the consistent shear deformable discrete laminate theory of
laminated composite plates is proposed in Section IV. Direct as well as complementary

formulations are discussed. In Section V a finite element discretization procedure is




introduced. In Section VI, application of the finite element code to evaluation of
stresses in some cross-ply and angle-ply free-edge delamination specimens is described
along with an application to free vibration analyses.

The development of the coupled shear theory discussed herein is an important step
forward in obtaining reliable estimates for stresses and deformations in laminated
composites. Clearly, the new theory has certain limitations including its assumptions of
vanishing transverse strain. Further refinements on introducing coupled relations for the
other force resultants besides shearing forces, and allowing for variation of transverse
stress over the thickness of the laminate is apparently necessary for reliable estimation

of stresses in a composite laminate.




Section 11
FIELD EQUATIONS OF THE DISCRETE LAMINATE THEORY

OF COMPOSITE PLATES

2.1 INTRODUCTION

In this section, field equations of the discrete laminate theory for dynamics of
laminated plates are summarized using the Kinematic assumptions proposed by Srinivas
[1973), Sun [1973], and Seide [1980] The domain of definition of all functions is the
Cartesian product Kx[0,c0), where R is the closure of the open, connected spatial
region R occupied by the plate and [0,00) is the positive time interval.

We consider a laminated plate of uniform thickness h composed of an arbitrary
number of thin layers, in which each layer is assumed to be homogeneous, linear
elastic with its material axes not necessarily coincident with the geometric coordinate
axes (Figure 1.). For the Cartesiar reference frame used, the origin is located in the

bottom surface of the plate (x,—x, axes) with x, axis normal to this plane. Also, in

each laver a local coordinate system, x:“, is set up in a similar way with the range

of x' limited to the thickness of k" layer.
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Figure I: Global and Local Coordinate Systems in a Laminated Plate.
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22 FIELD FQUATIONS OF LINEAR ELASTOSTATICS
Differential equations of equilibrium for linear elastostatics are:

o,;¥f,=0 (1)
where o, and f, are components of the symmetric Cauchy stress tensor and the body
force vector respectively. Here, and in the sequel, we use standard indicial notation.
Roman indices take on the range of values 1, 2, 3 and greek indices the values 1, 2.
Summation on repeated indices is implied except where indicated otherwise. The
superscript (k) denotes the k™ layer and is not summed. Parenthesis around a single
index indicate "no sum” on that index. Parentheses around a pair of indices denote
symmetric part of the tensor defined by the pair. Indices following a subscripted
“"comma” denote partial differentiation with respect to the spatial co-ordinate defined by
the subscript.

For small deformations, the strain-displacement relations are:

e, (u,..j+uj".) (2)

=

where e, and 4, are components of the strain tensor and the displacement vector,
respectively.
For isothermal elasticity, the constitutive equations are:
(T'j = Ei/k/el'/ (3)

where, because of the symmetry of e, and o, the components E,,, of the elasticity

172
tensor satisfy the symmetry relation

E.ju = Ejil'l = Eijlk (4)
Further, assuming the existence of an energy function implies E, ,=E, . For a
general anisotropic naterial, the elasticity tensor with components E, ,, has 21

independent elements. If inverse of (3) exists,

8




=C . o : (5)

el‘/ ikt ke

where C, ,, are components of the compliance tensor.

23 SPECIALIZATION TO A LAMINATED PLATE

2.3.1 Kinematics

FFor a laminated plate subject to bending and stretching, in order to reduce the
problem to one in two dimensions, the functional dependence of the displacements upon
the transverse coordinate x, is made explicit. Often, the in-plane displacements are
assumed to vary linearly within each layer and the thickness stretch is assumed to be

negligible. Mathematically, for the k™ layer, this can be expressed as

ul(x,,0) = 700, 0) + 13 60 (xg,0) 6)
uy () = w(xg,0) (7)
where @, w'* are the associated displacements at the bottom surface of the k™ layer;

and ¢ are the rotations of the cross section of the k™ layer. For small deformation,

the kinematic relations for the k™ layer are (2

w _ 1 (u“)

(&)
€ =
1% 2 L

L)
+ud) =y
g4 (0,/)

(8)

Substituting (6) and (7) into (8), the strain-displacement relations for k™ layer become

) _ ) *) (&)

eaﬂ - ecB + X3 Koﬁ 9)
) _ 1 . ) (k)

€= 5(1}5o +w'°) (10)
) _

e, =0 (11)

where the hinematic variables are defined as




_m_ 1, _(A) __(1)
tag = 5 Wy + ) =0, (12)

(k)_l (k) (k)y — &)
K°ﬂ= (¢ ¢ ) ¢(0'ﬂ) (13)

2.3.2 Equilibrium Equations

The three-dimensional equations of motion of the k" layer are
q y

(4) () (1)

+f, =p u (]4)

i

)
g

o

where p''’ is the mass density. Here, superposed dots denote time derivatives of the

order denoted by the number of dots. Regarding o\, f\", u* as functions of x, (14)
is equivalent to
() £ &) k) _n _
f(a,” j‘f —p u )xdx, =0
for n=0, 1, ... co. The integration leads to a countable set of equations involving

functions of x, and x,, As an approximation, the values n=0, 1 are generally used.
Evidently, higher order equilibrium theory would use higher order of n as well. For

the k™ layer, integration of (14) and the first moment of two of the equations (viz.
i=1, 2) over the thickness of the laver, for the displacement assumptions (6) and (7),

gives [Al-Ghothani 1986)

(k) (k) (k- 1) (&) (&) _(&) (&) (k) _
N+ (T T )+F —P'a —R'¢ =0 (15)
Mu) Qu) + (, +t T(A) (k)ﬁi’k) _ I(t)¢i:-) =0 (16)
le + (T(;)— ™)+ Fm (”w b= a7

where

10




i

oY = f o“ax¥ (18)

(0]
t
W) g0y _ N (&) 5 (&)
. (N,g Map) = j(l, x3) 0,4 dx, (19)
0
- t .
() (k) (%) &) k)
(FV,6*) = j(l,x3 ) £ ax (20)
0
u\_ ff(:) o (21)
[§]
Ty
(P, R, Iu)} _ f{l’ x(;>’(x(;))<z)}pmdx(;) (22)
0
T = ¥ =) = 4G =0) (23)
T(f'” = U(,.;)(I(;)-:()) = vil;")(x(;—”=zk_l) (24)

and t, is the thickness of the k™ layer.

2.3.3 Constitutive Equations
For a composite lamina having material symmetry with respect to its middle
surface, coupling of the extensional stresses and the shear strains vanishes and (3)

reduces to [Al-Ghothani 1986)

(k) _ &) (0 () (k)
s = E greers T Eog33€33 (25)
: (A) 0w
= 2E]) (26)
. W _ pte) M D)
3 33y6 ya 5(3333 €33 2n
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Substituting (25) into (19) and using (11), the constitutive equations of bending and

stretching are obtained in terms of plate kinematic variables and force resultants.

Namely,
(k) (k) (k) (k)
Nog| _ |Bosys Bapye| [Exs (28)
M®© ) ) *)
of oBys Dapys| $ys
where
t(z) 2
") (L) ) 1 & (&)
(AAnﬂy?v' Bnﬂy?n ])uﬂyil) = (tl ' T ’ ?) Eﬂﬂyf) (29)

It is well known from the exact elasticity solutions [Pagano 1969,1970a} that the
transverse shear stress distribution is close to parabolic over the thickness of each layer.
In (10), however, the transverse shear strains are constant through the thickness of a
Jayer, which implies the constant shear stresses through (26). Furthermore, if interface
continuity requirement of the transverse shear stress is enforced, the shear stress
distribution becomes constant over the thickness of the entire laminate, which is far
from the real situation. As a result, direct use of (26) for obtaining the plate
constitutive equations yields an error in the evaluation of the plate stiffness. The
usual measure to avoid this error is to multiply the shear stiffness in (26) by a
coefficient KX, but a standard method to determine the value of KX is not available.
Therefore, a procedure to obtain the shear stiffness matrix which takes into account
parabolic distribution of shear stress needs to be developed so as to ensure reliability of
the theory. This issue is addressed in Section III by developing consistent transverse

shear constitutive relations which allow for realistic stress distributions.
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BOUNDARY CONDITIONS

For the k" layer, the boundary conditions associated with the field equations are:

Nf:;np = ﬁ:‘)(xﬂ,t) on S(:)x[0,00)
Mf;np = ﬁl?)(xﬁ,t) on S(:)x[0,00)
fo) = fo)(xp,t) on S(S")xIO,oo)
17(:) = ﬁ'g)(xﬂ,t) on S(;)x[0,00)
¢L“ = $:)(xﬁ,t) on S:”x[(),w)
wt) = W(“(xp,l) on S(:)x[0,00)

(30)

(31)

(32)

(33)

(34)

(35)

where x, are the coordinates along the edge boundary S5 of the spatial region R

occupied by the plate; a circumflex denotes the value of the prescribed quantity on

S$*; and m, are components of the unit outward normal to S*.

The boundary

segments S;", S% are complementary subsets of S*, and so are S®, S®. and S®, s¥.

25

INITIAL CONDITIONS

The initial conditions for the problem are
17(: )(xﬂ, 0) = ‘:3(13)
. (x,, 0) = $ukx,)
wxg, 0) = wlx)
#x,, 0) = @40x,)
¢z, 0) = $¥Nx,)

: (6) — o0
wxg, 0) = W)

13

(36)

(37)

(38)

(39)

(40)

(41)



26 INTERLAMINAR CONTINUITY CONDITIONS
Since it is assumed that all the layers are perfectly bonded, continuity of
displacements and tractions along interlaminar surfaces must be satisfied. The

displacement continuity conditions are:

(1) _ () *)
a =z ' +t,¢ (42)

o

w(bl)= w(A-) (43)

and the traction continuity conditions are:

(), () _ e k1) _
5 (X =1 )=o0, (x;, "=0) (44)

Through these continuity conditions, all the field equations defined for each layer can
be combined to give the governing equations of the laminated plate.

In approximate solution procedures, two distinct situations may arise. In case the
interlaminar traction components and the layerwise shear forces are admitted as field
variables, continuity can be directly enforced. On the other hand, if a displacement
type approach is used, the shearing forces obtained through material contitutive relations
can be grossly in error if the simplistic kinematic assumptions (6) and (7) are used.
An alternative often employed is to evaluate shearing stresses from consideration of

equilibrium, ie., obtaining 0'(:2 through the material constitutive relations but

3] (k)

o) and o} using (14). We discuss this point in Section V where the new theory is

applied to free-edge delamination specimens.
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Section I
CONSISTENT TREATMENT OF TRANSVERSE SHEAR

DEFORMATION

3.1 INTRODUCTION

l.aminate theories based on assumed displacements, in general, do not satisfy the
constitutive relations of transverse shear. Since the effect of transverse shear
deformation is significant in laminated composites, there could be certain loss of
accuracy in the analysis due to this error. In particular, its effect could be significant
in thick laminates and hybrid laminates composed of layers with drastically different
shear rigidities. For this reason, to enhance the reliability of laminate theory,
development of a procedure to incorporate transverse shear effect properly is necessary.

In this section, the development of constitutive equations of transverse shear in a
consistent manner is described. The assumptions and notation of a discrete laminate
theory given in Section II are used. The theoretical basis for development is a
generalization of Reissner's mixed variational principle of linear elastic orthotropic plates
to laminated composites. Reissner's principle was stated on an ad hoc basis. Herein, it is
derived as an extension of the general variational principle for linear elastostatics based
upon the general procedures for coupled linear problems introduced by Sandhu and his
co-workers [1970, 1971, 1975, 1976) A summary of these procedures is given in
Appendix A. Throughout, it is assumed that all the functions are defined on R,
closure of the open connected spatial region of interest R. A rectangular Cartesian
coordinate svstem is used.
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32 COMPLEMENTARY FORM OF FIELD EQUATIONS OF LINEAR
ELASTOSTATICS

The field equations (1), (2) and (5) of elasticity can be written as follows.

Ouppt Tozs ¥ £, =0 (45) ,
Orat Ty ¥ ;=0 (46)
€= % (u, , + u, ) (47)
e, = —;— (u, 5 +uy ) (48)
€y, = Uy, (49)
€= Cuﬁyboyb + 2C03,3",3 +C, 533955 (50)
€3 = Co3ye Ty 205,305 + €333 93, (51)
€33 = Cy3y5T,5 ¥ 2C;53,30 3 + Cyy3,05 (52)

Here we have separated the equations involving spatial co-ordinate x, from the others.

33 SELF-ADJOINT FORM OF FIELD EQUATIONS

\
!
Coupled field equations of linear elastostatics (45M52) can be written in }

self-adjint matrix form as

9
0 o o Es, L
u
o o & & o |l [
03 oY ¥ -f,
—_ o = (53\ -
0 563' Ci33 2Ch5,5 Cospe || 23 0 !
o 0
_ _3 v
93 say -6_‘; 2Co333 460373 2C0376 be 0
—-L, 0 Cps 2Capys Copys
in which §_, is the identity tensor, -éa—e-?_- —é%e- and
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_ 1 9
L = E(SM@M‘”;’%)

1
L2 = 5(80‘7?% + 806 -a%—)

The operators on the diagonal of the matrix in (53) are symmetric tensors. If we

define

<f,g>REffng (54)
R

the off-diagonal operators constitute adjoint pairs ie.,

U, O 3>, = <O u >+ <u,0  M>, (55)
SUYO 3>, = — <O Uy >+ <uyl o M >0, (56)
ULO o3> = = <O U, Do+ <UL N> (57)
UPO 3 > == <O Uy >+ <uy0 .M >, (58)

(55) through (58) are sufficient to ensure self-adjointness of the matrix of operators in
(53) in the sense of (A.25). Consistent boundary conditions associated with the field

equations (53) are:

u,m, = ﬁonﬁ and u.m, = um, on S, (59)
um, = 331)3 and uym, = 133'% on §, (60)
(o, m; +o,m)= —i_ on S, (61)
—(ogm,to m)= —?3 on S, (62)

where a superposed circumflex denotes the prescribed value of the quantity over the

boundary surface; ¢, and 7, are the components of the prescribed traction vector and of
outward wunit vector normal to @R, respectively. In addition, S, and S, are

complementary subsets of §R. We note that in a physical problem, each component of

17




displacement or traction may be specified over different parts of the boundary.
However, in the interest of conciseness, we denote the part of the boundary on which
displacement is specified as §, and the portion on which traction is specified as §,.
This representation is symbolic and in no way indicative of limitations on the theory

in this respect.

34 A GENERAL VARIATIONAL PRINCIPLE

Using the definition (A.26), the governing function for the field equations (53)
and associated consistent boundary conditions (59)-(62) can be written as
1 = <u 0 33>, + <u 0o,

>t <u,0o >+ <uuo 4 >, + 2<u°,fo>k

' 8.8 3337 R 3.
+2<uy,f,>p,— <o u >, — <0 Mu  tu, )>, - <O g0 U, >
+ <033 C3333933 1 2C53,30 03 Y Ca306% s> 2
+ <205, Cl333033 1 205,50 3 ¥ Coz 6916 > 2
+ <0'aﬂ , Ca;s33°'33 + ZCMMO'73 +CaBy5Uy6>R
+ <0 g um, —2&on3>s, + <0y, um, —2{23'n3>sl
+<o_,, (W, —2&0)1;3>Sl + <o, (u3—2§3)nu>sl
~<u,, (o m+0o m)=2, >, = <Uys Oy = 2f3>sz (63)

Let (}=1{u,,q,, o,,, T, Ty} be an admissible state corresponding to the set of field
variables {v}={u_, u,, 0 ,, 0, ;, 03;}. Assuming that {V}+A{P}, for X a scalar, is an
admissible state for all A, ie. Q is defined at every point in a neighborhood of v,

Gateaux differential of 1, along ¥ is

A, Q=-2<T ., (u, +u, ) —2C,, 0, —4C ;0 ~ 2C 15039 6>

-2<T _,u ,~-C
off

of 338933 — 2C

y3aﬁoy3 - Coﬁy6076>k
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- 2C o.—-C o .>

-<T U —C o333 o3 af33 af” R

33 » Y33 3333933

+2<u_,0 + T g + f°>R + 2<173, Ti33 + T s + f3>R

al,3

+2<7_;, (u, u)'r) > +2<a'33, s m> s
+2<0_,, (“3‘“3)'7a>s, +2<T,,, (—un>g
—-2<@_, (oaﬁnﬁ + 0’03"{]3)—ta>82 - 2<i,, (o,,m, +"03"'a)"‘3>sz (64)

Because of the self-adjointness of the operator matrix (53), (51){(54), and linearity and
nondegenarcy of the bilinear mapping, the Gateaux differential (64) vanishes if and

only if all the field equations and boundary conditions are satisfied.

35 EXTENDED VARIATIONAL PRINCIPLES AND A SPECIALIZATION
Equations (55) through (58) relate pairs of off-diagonal operators in the operator
matrix of (53) and may be used to eliminate either of elements in each pair from the

governing function Q,. Elimination of an operator A, implies that the state variable u,
need not be in the domain M, of A,. This may result in relaxing the requirement of
differentiability of u, thereby extending the space of admissible states.

Through this procedure, numerous extended forms of the function 2, are possible.
Using (55)(58) simultaneously to eliminate O,;,, O5,, 0,55 and Oy, from Q,, the

domain of the functional is extended to include nondifferentiable stress state. Explicitly,
this functional is

Q.= —2<0'oB,u

2 —-2<0

(“.,3+“3,a)>x_2<°' >

wf” R a3’ 33+ %337

+2<u,f >, + 2 <uy,fi>,

+ <04y Cy3330 334 2C55,30 31 Ci306T 06> 2
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C ...0..+2C o .+C

+ <20 2333733 a3y3753 T La3y6% e

a3’ >R

+ <a'ap , Caﬁ330'33 + ZCMM(J'73 + Caﬁy6°y5>k

+2<0,,, ("o.""a)np>sl +2<0,,. (143—143)-n3>sl

+2<0

a3’

(uo—um)'r)3>sl +2<0,,. (“3_"3)"'o>sl

+2<u°,t°>82+2<u3,13>sz (65)

This is equivalent to the Hellinger-Reissner mixed variational principle. For this
functional, certain specializations are possible by constraining the admissible state to

satisfy some of the field equations. Assuming that (53), is identically satisfied, i.e.. the
constitutive equation is exactly satisfied for the "inplane” deformations and stresses, (2,

reduces to

Q.=—<0 ,,u
off o,

3 >p -2<0

3 (ua_3 + u3'G)>R 2<0,,, U5,

8

+2 <u°,fa>R + 2<u3,f3>R

+ <035 Cy333933 1 2C53,30 3+ Ci300% 06> 2

C ...0o..4+2C o.+C . .,0 . >

+ <20 0333 33 a3y3 ™ y3 o3y y§8© R

a3’

+2<0

of? (uo --—uu)‘nﬁ>sl +2<0,,. (113—113)‘113>Sl

+2<0_,, (un-uo)v)3>sl +2<0_,, (“3'“3)no>s,

+2<uo,to>52+2<u3,t3>sz (66)

The only assumption to obtain ), is that the kinematic and constitutive relations of

1-2 plane are satisfied. In connection with the use of this functional in deriving a
plate theory this point is noteworthy because most theories based on the assumed

displacement field satisfy this requirement. Reissner [1984] presented a mixed
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variational principle equivalent to Q, which was derived using a Lagrange multiplier
technique and partial Legendre transformation. For some special types of elastic
materials with certain symmetry of material properties, the procedure for obtaining the
explicit form of the principle was discussed. However, an explicit expression of the
principle for a general anisoctropic material was not given. The derivation above shows
Reissner’'s ad hoc formulation to be a special case of the general variational principle of
linear elastostatics. Also, Q, in (66) would be more convenient than Reissner's mixed
variational principle for the general anisotropic case.

If we assume further that the displacement boundary conditions on §; are
identically satisfied, €, reduces to

Q ='"<°'a,s’“

P >p—2<0,, w +uy )>, ~2<0

>

8 13- 43372

+2<u,f, >, +2<u,f,>,

+<0,,C o,..+2C o .+C

33 V3333933 3303%03 T 0330605~ 2

+ <20 C o,..+2C oc._+C

2333933 03y3%y3 Y Ca3y6%06” 2

al’

+2<u°,t°>sz+2<u3,t3>sz 67

36 A VARIATIONAL PRINCIPLE FOR A LAMINATED PLATE

The functional (67) written explicitly is:

_ 1
Q,= f{ 2 Toplap o, tuy )+ o ug,
R

— 1 ~ A
—0 48, — —5033 g, u/f, } dR-[ ut ds (68)
2
in which
éo] = Culy&ay& + 2Cu3y3 G)J + C0333 033 (69)
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8,35 Cy3.50,5 +2C5;5,,0 3+ Cyyy,0,, (70

Recalling that in the derivation of the above functional the in-plane kinematic and

constitutive relation (53); was assumed to be identically satisfied, with some algebra,

vanishing of the Gateaux differential of Q(u,0.,) along the path (v,,7.,), gives

O=A(‘r) f{av +7 (u tu, —28 )+ 7,,(u,—%,)
—vlfl}dR—[\Ji?,ds (71)
2
Using (55)-(58) yields
0=24, . ,0 f{—(o w7 (u tu, —2 )+ 1, (-8 ) dR
—‘[v,.(t‘.—?i)ds (72)

t2
Using the notation defined in Figure 1, the variational equation for a laminate

composed of N layers is

(% ¢ (&) (k) (k) (&) U) ()
0= f{z [ 45 W0+ 76l +ul) —2200) + 73] (uy  ~ & Ddxy" } A

[lZf u)( ) ‘“’)dk(“ ds (73)
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37 CONSTITUTIVE EQUATIONS OF TRANSVERSE SHEAR

3.7.1 Assumed Transverse Shear Stresses

In order to use the mixed variational principle, developed in the previous
subsection, to set up constitutive equations for the force resultants, following Reisner
[1984] we propose a state of stresses in equilibrium. The stresses are stated in terms of

the force resultants as follows. Assuming the components affa) to be linear in x,, ie.

y ) ) G
oub - o’(\ﬁ+('nﬂ13 (74)

where 0, and C; are independent of x|’ coordinate, and using the definitions of

force resultants it is easy to show that
£ £
o) = 22-32)N + Lo npM¥ (75)
°f ¢ t oB T 2t of
k k t &
The equilibrium equations of elasticity are, separating the in-plane equilibrium equations

from the transverse ones, and ignoring inertia terms:

78 ) 0 _

ooﬁrﬂ + 003.3 + 'f(o =0 (76)
) ) 0 _

Oya T 0335 t f(a =0 amn

Integrating (76) with respect to xi,
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(L)
(A) (L D f(o_(u +JJ:)) dx(;) (18)

Substituting (75) into (78),

L0 0 0 (lc)
ol = T _ 4 2-)- 3(—)]fo;'ﬂ— t—[(—-)’—( SoMG, - FY (9)
& b
Substituting (15) and (16) in (79) and again ignoring inertia terms,
x(x) (A)
oy =T Y 4 ) S O+ g -7 )
I3 l
L L
[(—)‘ (2] 10V -6¥ -1, 1) - FY (80)
A L ‘
In case of no body force, ie. F'=G* =0, (80) reduces to
(l) ((“Q(” + g(l) g 1) + C(I:)T(l) (81)
where
)
“ _ 6 (4 X5 e
[ ._2 t 3
t ‘
0 L)
{=3(2) —a(2) +1
4 tl
L w
x
U T I Y0 1
l ti

For a monoclinic material, it is only necessary to describe o‘:,’ in terms of O 1o

evaluate e,, in (69). Using the engineering notation for elastic constants . and S,
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(&) L) £) ) (k) &f4) (&)

2,, 1 ss —Cas| [T23] _ P44 ©as| [T 23
)| PO g g0 | W] T s s I
13 45 *a4 13 as 9ss] Y13

where

(&) _ k) k) N2
D=0, 55—(d45)

3.7.2 Constitutive Equations for Shear Resultants
Neglecting €, and noting that uy’;=0 for this formulation, (73) yields the Fuler

equations for transverse shear

N

Ty
Osz{f Ty Gy iy, =280 dxy’ | dA (83)
A ()

k-1

Using (6), (7), (81) and (82), and denoting the "variation” in any quantity by the

prefixed symbol 8, (83) can be rewritten as

N S(‘.)
0= [ Z1snY |wncal e - NNt ) ;1.:”
A k- "

73)
N ) , , LIS
+ 8T LMD +w) = INNED, P T ) aa (84)
' Sss
w here
[H(o"]l = [Q:). Ti: ”. T:)] (85)
Y =1 28 1 w0
®) () )
1 M2 My
N = i 8 8 o
0 W

My3 My My,
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Tk
= f ¢ dx
(0]
r
"f;) _ j‘ gik){(jk) Y
(4]

Explicit evaluation of integrals in (88) and (89) gives

(«)
J

(k)

L 3

j= 123

ij= 123

()
L =

1 1,

w _
22

)

(88)

(89)

2
15

4

y _t
i 3() 4

Vanishing of the integral in (84), for arbitrary values of 8Q"’ and 8§7*"' pives the

following constitutive equations:

() £) &) (k) k-1) £)
¢| +w.n = S(ss s45 6 1 ___1_ T(l _ _1_T(| k=1 2 N (90)
(*) 0 dlIse |4 10 -1 10 |4) T e
®, +w, s(as S(«u L pe2 T, T(z
(&) &) [ A k+1) fk+1)) [ A+t
o _ 1 Sss s(as Q, 1 S(ss 5(45 1
0 10 |®) O |4 10 |oter 1) lier )] | k41
S45 S44 2 S(45 s(44 J 2
() o6) fpl-1) k1) Gk D} [kl
_ & Sss Sas T(n Y S(ss Sas | [Ty
30 |ot&) o |- 30 |h+1) Qe D] | kst
S45 S44 TZ sd‘n de T'(?
(£} olk) (41} Glh+1) 1)
2 Sss Sas Sss Sas L
+ — |t k=1, 2, ... N-1 (91)
15 ‘S(l) S(A) Al k1) Qs 1) v
45 44 45 44 2

For a laminate of N layers, (90) and (91) constitute 2(2N —1) equations. These

equations may be solved for T and Q¥ in terms of ¢*’+w_. To do this, it is

convenient to rewrite these in matrix form as
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where

Symm.

0
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(92)

(93)

(94)




)
N, —-=M, 0
!, Iy
T30 2 2 T30
!y
0 ——M3 N3
K, =
n-2
30 Mn—z
tn-?
Symm. an’Z Nn 5
O tn IM
30
(1) (2) (2) (n) (n
=", 0,02, 07, .. ... OV, oM
XbT" (l)’ (1) T(Z), (2), ....... (n l) (n l)]
T _n.() () (2 (2 (n-1) _(n-1) _(n)
R, =ly, vy v oyyee oo e BT MR o
T _ 1 (0) (0) (n) (n
7, = 151878, .0.0,....0,0,g" g
T 1 (0) (0) (n) (n
71»:36[‘31'182'0'0"' OOtngl,tg2>]
and
(£) (k)
M = 55 545
L O W)
45 44
Nk = Ts—(t M +t Mk+l) k=1, 2, . ... 4 nl

) £ o) (k)
81| _ S‘ss Ses T(n

= k=1 or n
(%) k) o) &)
L$) s(As Saa T(z
D=+ w k= 1,2 .....n

Solving (92) to eliminate X,
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0
0
0
(95)
0
n-1
30 M
Nn 1
(96)
97)
(98)
(99)
(100)
(101)
(102)
(103)
(104)




Kx, =R (105)
where

K=K, ~ Kabx;t: K:b

R=R —K_ K, 7,+7,
Inverting (105),

x =K 'R = AR (106)

a

Equations (105) and (106) represent the relations between the shear forces and the
shear strains. llere K is symmetric because of symmetry of K,,’,, and, therefore, A is
also symmetric. In (104) and (105), R depends upon the shear stresses specified on the
laminate surfaces so that the constitutive equations of transverse shear include
dependence upon these quantities.

In general, K and A are full matrices. “hus (105) and (106) may be rewritten,

in the absence of surface tractions, as

n
9 + wf:)) - Zf‘:‘;) ,;, (107)
J=1
and
0 = T A (8, + W) k=1,2,. ... n (108)
=1

where A and u!y are coefficients defined by the material properties, thickness of

Jayers and stacking sequence of a laminate. From these relations, it is seen that the
shear force in a layer is a linear combination of the transverse shear strains of all
other Jayers and vice versa. This result is due to continuity of shear stresses in the

interfaces and shows that conventional approaches to handle transverse shear are not
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appropriate.  Also, symmetry of matrices K and A  implies )\:"B’) = )\ffg) and ull)' = uw?,

which means that the contribution of unit shear strain in the j” layer to the shear
force of the k” layer is the same as the shear force in the j” layer caused by the

shear strain in the k” layer.

3.7.3 Specializations to the Mindlin-Type Laminate Theory
The procedure described above can be used to obtain the shear constitutive
equations of Mindlin-type plate theory. For a homogeneous isotropic plate, (90) may be

written as

0., ©
0 Q44

-+ -
<j>,+w'l 71+T1

¢2+w'2

1

Q
[' i (109)
T, +T,

&

=.§.h
6

where T., T, (a=1,2) denote the shearing stresses specified on the top and the bottom
surface respectively. If the plate surfaces are traction-free, the relation (109) reduces to
Reissner's [1947] shear constitutive equations with the shear correction factor k=5/6.

For Mindlin-type laminate theory [Yang 1966, Whitney 1970] rotation of the plate
cross-section is constant and the plate shear force resultants are the algebraic sum of

shear forces of all layers, ie,

()

¢ =¢" forall k and Q =¥ QY (110)
L=1

In this case, the shear constitutive equations (108) reduce to

Q, =TT A (@ +wy) (111)

k=1 =1
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3.7.4 Traction-Free Edges

For the case of free-edge delumination specimens, the transverse shear stress o, at
the free-edge is known to be zero. This implies that T and (2") at the free edge are
zero. Consequently, the known quantities 7% cannot be condensed out of (92).
Explicitly specifying 7% =0 and Q" =0, (92) may be rewritten in the form

K ' 0 | K 0 X“)(, R

(Dt (1)a T(a

(aa

- =1 - -

0 111 0 10Xy, 0 0
- =1 — 1-l=|=l_1|+|-= (112)

~
o
~
)
ES
5
=
5

0 101 0 | IJXa, Y 0
where
X =100.07. . . 0™ (113)
X =10, 07, . .0 (114)
me [T<ln' T(f), ....... ”T(ln—n] (115)
x(Tz)b = [T(;), T(ZZ), ........ , T(z"—')] (116)
' 1 lg(O)- 0.0.....0,0,g" (117)
Tn = 31081 0.0, .. ..0,0, g7 (118)
R(T“a _ [y“), (12)' ....... , ‘y(ln—l), (ln)] (119)

and K,,., K., and K,,, are obtained by taking the rows and columns corresponding

to T and O from  , K, and K,, respectively.
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Eliminating X, from (112),

KX, = Ry (120)
where
- _ -1 T
K(1) - K(l)aa K(l)abK(l)bbK(l)ab
— _ -1
R(l) - R(l)a K(l)abK l)bbT(l)b+T(l)a

In the absence of surface stresses, constitutive relations of the form (107), (108) at the

traction free edge are

n
—& )

(d)(ln + WT:)) = Y Q(l_n (121)
-1
and
o' = TR+ WD 12 22

Jj=1

where X\ and u%” are the constitutive coeeficients at the free-edge.

38 AN EXAMPLE OF COUPLED SHEAR CONSTITUTIVE RELATIONS
For a graphite-epoxy laminate, made up of 12 layers, each 0.005 inch thick, let

the material properties referred to the material axes be

= 6 - - (S .

E, =190x10", E, =E, =15x10" (psi)
- = 6 - 6 .

G,=G,, =08x10°, G, =0528x10° (psi) (123)

v,.=v .=03, v23=0.42

To study the role of coupling in constitutive relations for shear forces, we consider the

stackings [0,/90,], and [+45,/-45,].
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Table 1 shows the transverse shear stiffness coefficients for the [03/903] laminate
and Table 2 contains those for the [+45,/-45,] laminate. Only the coefficients
corresponding to the transverse shear stress resultants Q‘,"’ have been listed, ie, the
A%%. For the first laminate, O and Q% are uncoupled; ie, A%’ =\%"=0. For the
second laminate the coefficients for O and Q(k) are identical due to the fibre
orientation of 45% ie, A\’ =\%". The diagonal terms, ALY, represent the shearing force
in each layer due to unit shear deformation of the same layer. The off-diagonal terms
represent the coupling between layers. As 1is evident, for the cases studied the
interlayer coupling is not “strong” ie., the shearing force in any laver is not
significantly influenced by the deformation of the others. Also, the effect is localized

i.e, the contribution of deformation of any layer to the shearing force in another

decreases sharply with the distance between the layers. Table 3 and Table 4 show the
inverse of the stiffness coefficients ie, the compliance coefficients u*”.

It should be noted that in the case where G,;=G, there will be no coupling
between Q1 and O by virtue of % in (82) being zero. Moreover, the inter-layer

coupling will be independent of the fibre orientation as J% and Qf will no longer be

affected by the orientation of the fibres.
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Table 1

Transverse Shear Stiffnesses A, for [0,790;] Laminate

Layer Stiffness Coefficients

T N Y ST
1 3447698 133.860 22184  3.137 0538  0.002
2 133.869 3603.755  155.289  21.958  3.767 0646
3 22184  155.280 3576.224  128.611  22.066  3.786
P 3137 21958 128611 2404 119  110.513  18.961
s 0838 3767 22066 110513 2382.900  106.872
6 0092 0646  3.786  18.961  106.872 2382.300
R 0016 0111 0649 3253  18.337  106.770
s 0003 0019  0.411 056  3.149  18.337
e .+ 0003 0018 0098 0869 3253
0+« o4 o018 o111 0649
O . 0003 o018 0111
e . + 0003 0015

+ denotes coefficients smaller than 10’ in magnitude.

A=Ay =0
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Table 3

Transverse Shear Compliances #k\J 1 for {0,790, ], Laminate

B T T T T T i T e A S e

Layer Compliance Coefficients (Xx107)

S AW A by o
1 0.294 -0.0107 -0.0013 -0.0002 *  «
"2 -0.0107 o0.278¢ -0.0119 -0.0018  -0.0002
3 -0.0013 -0.0118  0.2807 -0.0148  -0.0018  -0.0002
"4 o.0002 -0.0018 -0.0148  0.4176  -0.0101  -0.002i
s . -0.0002 -0.0028 -0.0181  0.4214  -0.0186
e LT . -0.0002 -0.0024 -0.0186 04214
e O U 00008 -0.0023  -0.0186
e T T o000 -0.002
e T T T T o008
o T e
T L . T .
e T . L

U U S U e I A

- denotes coefficients smaller than 10° in magnitude.
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3.9 DISCUSSION

For determining the constitutive equations for transverse shear in discrete laminated
plate theory, a mixed variational principle of linear elastostatics has been derived. The
basis for derivation was the method proposed by Sandhu [1970,1971,1975] for the
variational formulation of linear coupled problems with multiple field variables. The
variational principle is equivalent to Reissner's mixed variational principle [1984], but
more convenient for application to a material with general anisotropy. Using this mixed
variational principle, a procedure to obtain the constitutive relations for transverse shear
has been developed for a discrete laminate theory which is based on the assumptions of
linear in-plane displacements and parabolic transverse shear stresses over the thickness
of each layer. The procedure allows for the interlaminar continuities of stresses and
displacements. Resulting constitutive equations show that the shear force resultants of a
layer are coupled with the shear strains of the other layers as well as of different
directions (x, and x,). As indicated by earlier investigators, the shear stiffness of
x,—x, and x,—x, sections, in general, are different and vary with stacking sequence of
a laminate. Also, the consistent shear constitutive relations for the Mindlin-type
laminate theory have been derived as a special case. Actual computation of the shear
stiffness requires inversion of a square matrix with constant elements. This can be
carried out with a high-speed digital computer without much difficulty. The
constitutive relation for shear at the freee-edge or surfaces on which shearing stresses
are specified is different from the relation when these stresses are not specified. The
example of a 12-layer graphite-epoxy laminate was considered using [0,/90,] and

[+45,/—45,) stackings and the extent of coupling studied.
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Section 1V
VARIATIONAL FORMULATION OF DISCRETE LAMINATE

THEORY

4.1 INTRODUCTION

Procedures for obtaining approximate numerical solutions to boundary value
problems are often based on variational formulations. For systematic development of
variational principles governing linear and certain nonlinear problems, general procedures
have been developed. Mikhlin [1965] set up the problem in an inner product space
and stated the basic variational theorem for a self-adjoint boundary value problem
with homogeneous boundary conditions. For deriving variational principles governing
initial value problems, Gurtin [1963,1964] used convolution product as the nondegenerate
bilinear mapping and explicitly included nonhomogeneous initial and boundary
conditions in the formulation. Sandhu [1970,1971] extended these ideas to the general
linear coupled problem. In the context of application of the finite element method,
Prager [1968) included in the variational formulation jump discontinuities which may
exist across interelement boundaries. By introducing the concept of boundary operators
consistent with the field operators, Sandhu [1975] examined the general case of linear
operators with nonhomogeneous boundary conditions and internal jump discontinuities.

For mechanics of the fiber-reinforced composite laminates, little work has been
done on variational formulation of the problem. Al-Ghothani [1986) following Sandhu

[1970,1971,1975.1976), presented a variational formulation of dynamics of laminated




composite plate. General variational principle was derived based on the complementary
form of an extension of Seide's [1980] discrete laminate plate theory to include inertial
force, allowing for nonhomogeneous boundary conditions and internal jump
discontinuities. Various extended and specialized forms of the general variational
principles were discussed. However, he failed to derive direct variational formulation
which gives other types of variational principles. Furthermore, the laminate theory used
did not treat the effect of transverse shear deformation adequately. This effect is
important in studying local deformation and possibly in modelling higher vibration
modes.

In this section, a variational formulation of the